Wikipedia Vs. Rata-rata Moving Exponential Moving averages lebih banyak daripada mempelajari urutan angka dalam urutan yang berurutan. Praktisi awal analisis deret waktu sebenarnya lebih memperhatikan nomor seri waktu individu daripada interpolasi data tersebut. Interpolasi. Dalam bentuk teori dan analisis probabilitas, datang kemudian, karena pola dikembangkan dan korelasi ditemukan. Setelah dipahami, berbagai kurva dan garis berbentuk digambar sepanjang deret waktu dalam usaha untuk memprediksi kemana titik-titik data bisa pergi. Ini sekarang dianggap sebagai metode dasar yang saat ini digunakan oleh pedagang analisis teknis. Analisis Charting dapat ditelusuri kembali ke Jepang Abad 18, namun bagaimana dan kapan moving averages pertama kali diterapkan pada harga pasar tetap menjadi misteri. Secara umum dipahami bahwa simple moving averages (SMA) digunakan jauh sebelum eksponensial moving averages (EMA), karena EMA dibangun pada kerangka SMA dan rangkaian SMA lebih mudah dipahami untuk merencanakan dan melacak tujuan. (Rata-rata pergerakan sederhana menjadi metode yang disukai untuk melacak harga pasar karena cepat menghitung dan mudah dimengerti. Praktisi pasar awal beroperasi tanpa menggunakan metrik grafik yang canggih yang digunakan saat ini, jadi mereka mengandalkan harga pasar sebagai satu-satunya panduan mereka. Mereka menghitung harga pasar dengan tangan, dan menggambarkan harga tersebut untuk menunjukkan tren dan arah pasar. Proses ini cukup membosankan, namun terbukti cukup menguntungkan dengan konfirmasi studi lebih lanjut. Untuk menghitung rata-rata pergerakan sederhana 10 hari, cukup tambahkan harga penutupan dalam 10 hari terakhir dan bagi dengan 10. Rata-rata pergerakan 20 hari dihitung dengan menambahkan harga penutupan selama periode 20 hari dan bagi dengan 20, dan Begitu seterusnya Rumus ini tidak hanya berdasarkan harga penutupan, namun produk tersebut adalah harga rata-rata - subset. Moving averages disebut bergerak karena kelompok harga yang digunakan dalam perhitungan bergerak sesuai dengan poin pada grafik. Ini berarti hari tua dijatuhkan pada hari penutupan harga baru, jadi perhitungan baru selalu diperlukan sesuai dengan kerangka waktu rata-rata yang digunakan. Jadi, rata-rata 10 hari dihitung ulang dengan menambahkan hari baru dan menjatuhkan hari ke 10, dan hari kesembilan dijatuhkan pada hari kedua. Exponential Moving Average (EMA) Rata-rata pergerakan eksponensial telah disempurnakan dan lebih umum digunakan sejak tahun 1960an, berkat eksperimen praktisi sebelumnya dengan komputer. EMA baru akan lebih fokus pada harga terbaru daripada serangkaian data yang panjang, seperti rata-rata pergerakan sederhana yang dibutuhkan. EMA saat ini ((Harga (sekarang) - EMA sebelumnya)) X multiplier) EMA sebelumnya. Faktor yang paling penting adalah konstanta smoothing yang 2 (1N) dimana N jumlah hari. EMA 2 hari 10 hari (101) 18.8 Ini berarti bobot EMA 10 periode dengan harga paling akhir 18,8, EMA 9,52 dan 50 hari EMA 3,92 berat pada hari terakhir. EMA bekerja dengan menimbang perbedaan antara harga periode sekarang dan EMA sebelumnya, dan menambahkan hasilnya ke EMA sebelumnya. Periode yang lebih pendek, bobot yang lebih banyak diterapkan pada harga terbaru. Fitting Lines Dengan perhitungan ini, poin diplot, menunjukkan garis pas. Garis pas di atas atau di bawah harga pasar menandakan bahwa semua moving averages adalah indikator lagging. Dan digunakan terutama untuk mengikuti tren. Mereka tidak bekerja dengan baik dengan berbagai pasar dan periode kemacetan karena garis pas gagal menunjukkan tren karena kurangnya harga tinggi yang terlihat tinggi atau posisi terendah lebih rendah. Plus, garis pas cenderung tetap konstan tanpa petunjuk arah. Sebuah garis pas naik di bawah pasar menandakan panjang, sementara garis pas jatuh di atas pasar menandakan pendek. (Untuk panduan lengkap, baca Tutorial Rata-Rata Bergerak kami). Tujuan penggunaan rata-rata pergerakan sederhana adalah dengan melihat dan mengukur tren dengan menghaluskan data dengan menggunakan beberapa kelompok harga. Tren terlihat dan diekstrapolasikan ke dalam ramalan. Anggapannya adalah bahwa pergerakan tren sebelumnya akan berlanjut. Untuk rata-rata bergerak sederhana, tren jangka panjang dapat ditemukan dan diikuti jauh lebih mudah daripada EMA, dengan asumsi yang masuk akal bahwa garis pas akan bertahan lebih kuat daripada garis EMA karena fokus lebih lama pada harga rata-rata. EMA digunakan untuk menangkap pergerakan tren yang lebih pendek, karena fokus pada harga terbaru. Dengan metode ini, EMA seharusnya mengurangi kelambatan dalam moving average sederhana sehingga garis pas akan memeluk harga lebih dekat daripada rata-rata pergerakan sederhana. Masalah dengan EMA adalah ini: Rawan terhadap jeda harga, terutama pada pasar yang cepat dan periode volatilitas. EMA bekerja dengan baik sampai harga menembus garis pas. Selama pasar volatilitas yang lebih tinggi, Anda dapat mempertimbangkan untuk meningkatkan panjang rata-rata bergerak. Seseorang bahkan dapat beralih dari EMA ke SMA, karena SMA memperlancar data jauh lebih baik daripada EMA karena fokusnya pada sarana jangka panjang. Indikator Trend-Following Sebagai indikator lagging, moving averages berfungsi juga sebagai support dan resistance lines. Jika harga turun di bawah garis pas 10 hari dalam tren naik, kemungkinan besar tren kenaikan mungkin akan berkurang, atau setidaknya pasar mungkin berkonsolidasi. Jika harga menembus di atas rata-rata pergerakan 10 hari dalam tren turun. Tren bisa berkurang atau mengkonsolidasikan. Dalam kasus ini, gunakan rata-rata pergerakan 10 dan 20 hari bersama-sama, dan tunggu baris 10 hari untuk menyeberang di atas atau di bawah garis 20 hari. Ini menentukan arah jangka pendek berikutnya untuk harga. Untuk jangka waktu yang lebih lama, perhatikan rata-rata bergerak 100 dan 200 hari untuk arah jangka panjang. Misalnya, menggunakan rata-rata bergerak 100 dan 200 hari, jika rata-rata pergerakan 100 hari melintasi rata-rata 200 hari, yang disebut salib kematian. Dan sangat bearish untuk harga. Rata-rata pergerakan 100 hari yang melintasi di atas rata-rata pergerakan 200 hari disebut salib emas. Dan sangat bullish untuk harga. Tidak masalah apakah SMA atau EMA digunakan, karena keduanya merupakan indikator tren berikut. Yang hanya dalam jangka pendek bahwa SMA memiliki sedikit penyimpangan dari rekannya, yaitu EMA. Kesimpulan Moving averages adalah dasar bagan dan analisis deret waktu. Rata-rata bergerak sederhana dan rata-rata pergerakan eksponensial yang lebih kompleks membantu memvisualisasikan tren dengan meratakan pergerakan harga. Analisis teknis kadang-kadang disebut sebagai seni dan bukan sains, yang keduanya butuh waktu bertahun-tahun untuk dikuasai. (Pelajari lebih lanjut dalam Tutorial Analisis Teknis kami). Jenis struktur kompensasi yang biasanya digunakan oleh manajer lindung nilai di mana sebagian kompensasi berbasis kinerja. Perlindungan terhadap hilangnya pendapatan yang akan terjadi jika tertanggung meninggal dunia. Penerima manfaat bernama menerima. Ukuran hubungan antara perubahan kuantitas yang diminta dari barang tertentu dan perubahan harga. Harga. Total nilai pasar dolar dari seluruh saham perusahaan yang beredar. Kapitalisasi pasar dihitung dengan cara mengalikan. Frexit pendek untuk quotFrench exitquot adalah spinoff Prancis dari istilah Brexit, yang muncul saat Inggris memilih. Perintah ditempatkan dengan broker yang menggabungkan fitur stop order dengan pesanan limit. Sebuah stop-limit order will. Moving average and exponential smoothing models Sebagai langkah pertama dalam bergerak melampaui model mean, model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasikan dengan menggunakan model moving-average atau smoothing. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat smoothing (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata - rata yang paling sederhana adalah. Simple Moving Average: Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t - (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model simple moving average (SMA) sama dengan model random walk (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk memperoleh kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia menggunakan banyak kuotimasi dalam Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang tampak lebih halus: Rata-rata pergerakan sederhana 5 langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai pengamatan terakhir, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian bisa menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata bergerak sederhana 9-istilah, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, rata-rata usia meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata pergerakan 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 - term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam prakiraan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapatkan bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan ramalan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam perkiraan pemulusan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, ketika 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada ramalan rata-rata bergerak sederhana karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang tampak wajar, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model acak berjalan. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linear konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena pilihan penyesuaian musiman dinonaktifkan saat jenis model disetel ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang sesuai per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau setidaknya tidak terlalu buruk selama 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan tren lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada berbagai titik waktu. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217s, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke seri Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat, bahwa dengan sederhana Eksponensial smoothing, ini akan menjadi perkiraan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi smoothing eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Ls menghitung perkiraan lokal tingkat dan tren dengan menghaluskan data baru-baru ini, namun kenyataan bahwa ia melakukannya dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Bisa diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian umur rata-rata data yang digunakan dalam memperkirakan tingkat lokal seri, rata-rata usia data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata 10.006 125. Ini adalah jumlah yang sangat tepat karena keakuratan estimasi 946 tidak benar-benar ada 3 tempat desimal, namun urutannya sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir rangkaian daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan cara memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat secara manual menyesuaikan konstanta perataan tren sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi paling baik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, perataan eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi naluriah kuotriotipnya. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Hal ini dimungkinkan untuk menghitung interval kepercayaan sekitar perkiraan jangka panjang yang dihasilkan oleh model pemulusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat bila perataan linier dan bukan perataan sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke atas halaman.) Rata-rata Bergerak Sederhana vs. Eksponensial Saat ini, Anda mungkin bertanya pada diri sendiri, mana yang lebih baik Rata-rata bergerak sederhana atau eksponensial Pertama, mari mulai dengan rata-rata pergerakan eksponensial. Bila Anda menginginkan moving average yang akan merespon aksi harga agak cepat, maka jangka pendek EMA adalah cara terbaik untuk pergi. Ini dapat membantu Anda menangkap tren sangat dini (lebih banyak lagi nanti), yang akan menghasilkan keuntungan lebih tinggi. Sebenarnya, sebelumnya Anda menangkap tren, semakin lama Anda bisa mengendarainya dan menyapu keuntungan itu (boo ya). Kelemahan untuk menggunakan rata-rata pergerakan eksponensial adalah Anda mungkin dipalsukan selama periode konsolidasi (oh tidak). Karena moving average merespon begitu cepat terhadap harga, Anda mungkin berpikir sebuah tren terbentuk saat itu bisa jadi lonjakan harga. Ini akan menjadi indikator yang terlalu cepat untuk kebaikan Anda sendiri. Dengan rata-rata bergerak sederhana, sebaliknya adalah benar. Bila Anda menginginkan moving average yang lebih halus dan lambat untuk merespon aksi harga, maka periode SMA yang lebih panjang adalah cara terbaik untuk pergi. Ini akan berjalan dengan baik saat melihat kerangka waktu yang lebih lama, karena ini bisa memberi gambaran tentang keseluruhan tren. Meski lambat merespons aksi harga, kemungkinan bisa menyelamatkan Anda dari banyak pelepasan palsu. Kelemahannya adalah bahwa hal itu mungkin menunda Anda terlalu lama, dan Anda mungkin akan kehilangan harga masuk yang bagus atau perdagangan sama sekali. Analogi yang mudah diingat mengingat perbedaan antara keduanya adalah dengan memikirkan seekor kelinci dan sekujur tubuh. Kura-kura itu lamban, seperti SMA, jadi Anda mungkin akan kehilangan tren lebih awal. Namun, ia memiliki kulit yang keras untuk melindungi dirinya sendiri, dan dengan cara yang sama, dengan menggunakan SMA akan membantu Anda menghindari terjebak dalam fakeouts. Di sisi lain, kelinci cepat, seperti EMA. Ini membantu Anda menangkap awal dari tren tetapi Anda berisiko tersingkir oleh fakeouts (atau tidur siang jika Anda adalah seorang pedagang yang mengantuk). Berikut adalah tabel untuk membantu Anda mengingat pro dan kontra masing-masing.
No comments:
Post a Comment